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1. Introduction

A magnetic drum is used to store information, The information
may come from an electronic computer or from a telephone dial.
The magnetic drum consists of cylinder on the surface of which a
ferromagnetic material is coated. Tt iz equipped with reading and
recording heads, which enables binary data to be recorded in the
form of magnetized elements on its surface when the drum rotates.
When & pulse is read in, it is stored as an elementary magnet with
a north and a south pole. The length of this dipole is of the order
of magnitude of 3 millimetres. The drum contains a number of
channels, the distance between them being ususlly a few millimetres.

The drum has been proved to be a reliable store and it is used
in most electronic computers. Drums have recently found applications
in telephony (MALTHANER and VAUGHAN, 1953) and other branches
where storing of information is necessary.

In this paper we study the field in the ferromagnetic layer and
the variation of this field with permeability, airgap, layer thickness
and other influencing factors. The problem is definitely non-linear
and extremely difficult to solve. But the linear case gives a first
approximation, which in some cases soems to be satisfactory. Here
we solve the linear boundary value problem for the two-dimensional
static field and the one-dimensional transient field. WaLLACE 1953
has solved the stationary linear case by assuming & sinusoidal surface
magnetizing field and has found very good agreement with measure-
ments. In an unpublished report by D. HUNTER, WaALLACE’s method
is generalized to space magnetizing and the demagnitizing effects
are also studied. WESTMIIZE 1953 has made a very thorough study
of the problem, but all parts of it are not yet published.

The drum for which the numerical computations have been made
is that of the Besk, the Swedish electronic computer.  This work
was, however, done after this drum was designed. The pulse frequ-
ency is assumed low enough to neglect eddy current losses in the head
and layer, that are made of a spinel material.




2. Main results

Below are given the analytical expressions for the magnetic field
in three different cases. The numerical values of the magnetic field
for special values of the parameters can be found in sections nr 6
and 7.

A recording head of normal construction is shown in fig. 1. Usually
the most interesting region is around the gap and this is shown in
fig. 2.

The three cases are:

The permeability in the la,yer is 1.

. The permeability in the layer is greater than 1 but the layer is
infinitely thick.

3. As 2, but the layer is finite,

by

The ﬁota,tions are

= layer thickness
= layer permeability
half the pole distance
= distance head — layer
o = induction in the pole gap measured in voltsecond per square
metre
By, = p, V{N, where V is the magnetic potential of the head.
o = 47 -1077 in the MKSA system,
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Fig. 1. Kernel to a recording head used in the Beak. The airgaps are exaggerated.
Measurements in millimetres,
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Fig. 2. The recording head in the neighourhood of the airga.p_a.

The expressions in the three cases for the magnetic flux B (x, y) =
(B, B,) at y = b (inside the layer) are:

B 1 B N4z N -z

1, s = — —~ By arctg v -+ arctg v
1 ¥+ + ap
Bo=gn Bolog i —op

: tx  tN

B __2rg a PTG

2 T T g e t 4 sinht 4 cosh¢
: .

3 . te N

b 2k | Ty T

v g e t usinh? 4 cosht

Asymptotic expansions (see appendix 1 for definition) for the B-
fields are:

2be=[ bs( Ns..) ]
B,= — B, 1—— (62— = —5) +...

T ad x® b

-

2N u bt . Ne :
B,=B, poge 1—;’7 22 —1— 3 58 + ...




. B4_p°°da tw AN( ot 1
. e = — H, t-Kcostmb sin b -|-,ucos-5-

T
o

Y. Fdt  tz N L 1
y = Bo — g.Kambsun--?’— M BN T+ cos Ny
o .

d d
K= +1)ainht(1 +3)+(,u- 1)sinhz(1—3)+

: d d
+pu{p4+1) cosht(l -}——b-)—y(p— 1) cosht(] —-3)

Asymptotic expansions are:

B B 26N pu
2T T g2
B 2N
=B~

The expressions in the three cases are derived by assuming linear
magnetic potential along y = 0. Thus

v=—V x<<—N
v=V z/N —N<z< N
v=4+F x> N

This linear potential between the corners is the result of investigations
made for the cases x = 1 and u = oo treated with conformal mapping.

The resuits may have their greatest interest when estimating the
effect on the field due to the drum eccentricity, layer thickness,
sirgap, layer pérmeability and so on. In the manufacturing of
drume this may be of interest in order to keep mechanical tolerances
below certain values,

3. Idealization of the pfoblem

The first approximation is to regard the drum surface as a plane.
The variation of the distance b (fig. 2) due to the curved surface
is about 10 9, for the interval 0 <C 2 <C 10 N. The quotient 4/N is
usually between 0,5 and 2. The drum diameter is 120 millimetres
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and the gap is about 0,02 millimetres. The length of the head is
about 100 times the gap width, so we assume that the head has
infinite length.

The width of the head is also about 100 times the gap width and
this shows that it is satisfactory to treat the two-dimensional problem
only. An investigation shows that the field along a generatrice is
very flat under the head. '

The permeability of the head is about 1000 for the frequencies
encounted, and this means that the lines of force leave the head
nearly perpendicularly. The magnetic potential of the head is there-
fore assumed constant, and is +— ¥V on the right half-and — ¥ on
the left half of the head.

In order to investigate how the pole length (0,3 mm in fig. 1)
influences the field in the layet, the angle « is introduced. If x = 0
this length is zero, and if « = 90° the length is infinite. This has
already been studied by Boors 1952 and is included here only because
we study the potential between the corners of the head.

4. The boundary value problem

The problem is to find the magnetic potential v (x, ¥) in the region
¥ >0, — oo <z oo (fig. 2) when the potential along ¥y =0 is
prescribed. The magnetizing vector is then .

H=—grad v(z,y) (1)
The potential satisfies the equation: |

8 B  av

sztastaghay =0 @

If u, the permeability of the layer, is a constant, we get. Laplace's
equation; ' 8t 3

YY" )

Av=20 4 =

Usually equation (2) is a non-linear equation. The boundary condi-
tions along y = b and y = b 4 d read:

RN _ 8 vy (1)
ay ¥ dy '
LR By,



where
v, = the potential above the layer {y = b — 0}
v, = the potential in the layer =56+ 10)
. v, = the potential in the layer y=c— 0
v, = the potential below the layer (y =c¢ + 0)
g = the permeability of the layer

The non-stationary one-dimensional field can be computed from
the equation (i is a constant):

B H s H "

¢ = conductivity of the layer

Equation (6) is a parabolic equation, while equations (2) and (3)
are elliptic equations. In the special cases ¢ = 1 and p = oo equa-
tion (3} is solved by means of conformal mapping. The general case
is solved by means of Fourier transforms. The non-stationary case is
solved by means of Laplace transforms.

5. The special cases p = 1 and p = oo

The four most interesting cases are treated by conformal mapping
(WEBER 1950). We use the notations

= ViN
= Vb

1. | =0, a = 90°

Because of the symmetry it is sufficient to consider the part
ABCDETF in fig. 3.

The Schwarz-Christoffels integral gives the following expressions
for the mapping function: :



i
I A v i ¥ = e
l ﬂ'l o
=¥ ! W . L
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Fig. 3. The cage 4 = oo, & = 80°.
- . 2N N 2b
z_——x—}yz?arctg
)
w = — - og (1 — t)

H=H, +jH,=jHtghp

The parameter p is defined by

a Nt tgh? p
t:ba+N’tgh’p

7138113’ +— P

(M)

(8)

(9)

(10}

The field along BC has been computed for /N = 0,5, 1 and 2

and is plotted in fig, 4.

Y
/] LT 7]
o9
24

4

ar

o ——— —— -
¢ ar ! 'L &

Fig. 4. The magnetic field on-the surface of the layer. u = oo, & = 890°
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2. p=o0,0=0°

The mapping function is:

- 2b & h -
i= |- tehp+p (11)
vV S
W= — ?log (1 — tgh® p) (12)
ginh 2 p
H=3jH, 1+ a (13)
cosh2p+1_a
Here,
t=a-tgh®p (14)

The parameter ¢ is to be solved from a transcendental equation.

The following values are obtained:

biN a

0,5 0,82058
1 0,34511
2 0,12821

The field along BC is shown in fig. 6,

Fig. 5. The cese u — 0o, & = 0°
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W,
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24

o
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°s 2 e P %

Fig. 6. The magnetic field when u = oo, & = 0°,

3. - p=1,a=90°

The mapping function is:

2N
2= (coth p — p) o (15)
: 2V - ) :
w=—-— log (sinh.p) ' (18}
H=— H,tghp an)
! = coth®p (18)

The mapping function has been used in order to caleulate the
potential between the two corners in fig. 7. To compute the field
for different /N as in the cases above is a tremendous task. Tt is
much easier to compute the field due to linear potential between
the corners and then compute the difference field due to the diffe-
rence between the linear potential and the actual potential between
the corners.

;" c ¥ e v

' *
. L” - § H - ¥

i F] ar 4 8 2 £

! SN R
ole

Fig. 7. The case & = 1, & = 90°
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|
M

-¥ r ¥
i X

A
Fig. 8. The case g = 1, & = 0°.
r=1l,6=0°

The field can be explicitely expressed in z:

H=—

2 H,
2

"Vl_‘jfi

(19)

The variation of the potential between the corners of the head
is computed for the four cases and is plotted in fig. 9. The linear
potential is slso drawn, and the question is whether this linear
potential can be a good approximation for computation of the field.

We have for the linear potential

v=—V z< — N
v="V 2z/N —N<ax< XN
v=VF" x> N

1]

/

ard

wus b S

of E0 g
-0

13

ar

-]

") ae ae 2 ar / Yy

Fig. 9. The potential hetween corners for different cases.

(20)
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The potential implies that we get a discontinuity in H, instead of
a singularly at the point (0, N). H, has still a singularity at that
point. In practice we have no smgula.ntles because the corners are
rounded off. The influence of rounded corners has been studied by
Cocenorr 1928.

The potential v (z, y) due to a known potentlal { (x) along the line
y= 0 can be computed from:

1 di
vEy =gpsn g [ 10— @
COR —?“”— — C08 "b_
If 4 is infinite we use the formula:
v =L 10— (22)

Evaluating the integral (21) for the function defined by equation
{20) we get the field for g — oo,

n(x-l—N)
2%

b a{x — N}
~ coB 25

‘GOS8

1
H,(z,b) = H,— log (23)

The field for different 5/N is shown in fig. 10. If we use equation
(22) we get the field for 4 = 1, and this is shown in fig. 11. The
field is always computed from equation (1).

The field is given by the eqs.

1 N + x N—=z
H (z,9)= — Ho? arctg " + arotg ” (24)

1 T+ (N + o
Hy(z,y) = Hyg - log ::—_*_ET“__—:% (25)
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¥ 7%

7 Py
o
a$
14

o

-4

& g‘;‘ ) t ’ g.' F X

Fig. 10. The magnetic field when u = oo and linear potential between ocorners.

In the Iagt three eqs. we have the field given explicity as simple func-
tions of x and y, and it is very easy to compute an actual field. The
approximation is found to be satisfactory for y-values greater than
0,5+ N. An estimation of the error involved can be done by using
the integrals (21) or (22), where the function f is taken to be the
difference between the linear potential and the actual potential
between the corners. Another method is to solve Laplace’s difference
equation instead of the differential equation (Karrqvist 1952) and
ag this is often favourable for numerical computation, it has been
used here.

[}
5

ar =

s

ar

o4

-5}

£y
Fig. 11. The magnetic field when x4 = 1 and linear potential between cormers,
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6. The general case with finite p but infinite layer
- thickness

In the last section it was shown that the linear potential is a
good approximation to the special cases u = 1 and x = oo, when
¥ > 0,5 N. Bince the magnetic field is a continuous function of u
we obtain a good approximation also when u is finite.

The equations of the general case are solved in appendix 2. In
this section we consider the case when the layer thickness is infinite,
which gives easier analytic expressions than having finite thickness.
The equations for the field components along the layer surface y = b
are according to appendix 2:

tz | IN

2 fa RN
k. t ueinht+ cosht

— B,

B 2 u = u— 1I\® z+ N x— N
T+ ) &w A e ) T T 1)
. L te  IN
s _p it [& el S
W= T, t psinh{ + coshi
[ H]
# Sl e WO ) e ak CA e Vs
= By———— ——— | log (27)
7 (4 1) des N\t 1 (N —ap+ 5 (2n + 1)
B, =poH,

The field B,, is measured inside the layer.

Figs. 12 and 13 show the fields for different xz and b/N.

The asymptotic expansions can be used to compute the tails of the
fields and this gives information of the interaction of the pulses on
the drum. The total field is

|B| = VB + B2 (28)

and are the dotted lines in fig. 10, where the fields for the case y = 1
are plotted.

(26)
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Fig. 12. The magnetic field in the layer for various g and b = N.

The asymptotic expansions are according to appendix 2:

2N b b3 hog
Bs,=-——.807 1—-? 6#’-—?——5 + ... (29)

2N u L/ N
By=8,— —[1——<{zw—1—g5)+... (30)

At the point z = 0 the infinite sum in eqnation (26) can be put in
closed form, namely:

2N u
“zb V,u’ —1

which shows that the B-field along the line z = 0 (y > b) appro-
aches infinity in the same way as log 4. This means that the field
approaches infinity very slowly with an increase in u.

arcosh g

B,, (0,)= — B

£e4 . L

e f z o
Fig. 13. The magnetic field in the layer for wvarious # and 4N = 0,6 and 2.
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7. Finite p and layer thickness

In the general case the field are given by:

Y T dt  te | N ht_d L.
— By ;. 008 e - gin + pcos (31)
o

BE:\:

4u dt te IN o 24 td , "

.szBo-—; t—Ksmb sin —={p 8l + cos > (32)
n .

where B,, and B,, are the fields at y — b + 0, that is, the field

inside the layer. At the other side of the layer y =8 4+ d — 0 we

have

4w [ dt tz  tN
By — — B"-n— t—Kcos—b-sm—B* (33)

0

4p “ a4 itz N
By, =B,— ;g Sinsin oo (34)

o
The function K is defined by:
d d
= {5 + l)sinhf.(l + F) + (e — l)sinht(l — ?) +
d | d
+ p(pe+ l)cosht(l +?) —ulu — l)cosht(l - b_)

The corresponding asymptotic expansions are:

26N u
-Bs:::—Bn T ad (35}
2N .
Bsy=Bn.E — - {36)
26N(y+ )
By, = — B, F (37)
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o
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- Fig. 14. The magnetic field for 4 = 2 and d — b,

2N
Bsy=BoE_--- (38)

The next term in the asymptotic expansions is found in appendix 2.
In fig. 14 are plotted the fields when 6/N = 1 and d/N =1, u = 2.

The deviation from the case when u = 1 is not very large. If the
field is to be computed for many values of b/N it is convenient to
write the factor

tzx  tN
c08 =+ sin — =
in the form
1 {  (N+4a)¢ (N —2)t
N b +sm

At a large distance from the origin the field is determined by B,,
eq. (36). This formula shows that the field is independent of x and
depends of #/N only. The same conclusion applies to B;, and thus
to the whole layer.

The linear case where u is & constant can be used as a first approxi-
mation to the nonlinear case. The hysteresis loop for the material
is showh in fig. 15 and if we use the initial magnetizing curve, we
find that the y-values vary from 1,1 at the origin to 2 at z = 4 N,
The induction B, was then 2500 gauss. The material is thus satur-
ated for z = 4+ 4 N. :
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Fig. 15. The hysteresia loop for the layer material.

. 8. Pole and layer inductance

The magnetic flux is divided into two parts: the first part con-
taining the flux going through the layer and the second part going
through the pole gap (0,3 mm in fig. 1). The corresponding induc-
tances are called I; and L,.

By integrating round the head we readily found:

I - n2 A po iy
P L 42Ny,
where

A = the area of the pole = 0,45 mm? for the head of fig. 1.
n = number of turns

I, = the mean circumference round the head

1y = the permeability of the head.

The inductance I; can be computed from eq. (24) if x is small.
Numerical computations shows that the contribution to this indue-
tance due to the layer is very small and ean normally be neglected.

We have

ndalN pq p N2+ (N 4 b
L= o sni g ™ ( + N=) N+ @+ oy

@ = the width of the head (1,5 mm in fig. 1)
Actual values gives the result

L,=3mH
ILj=0,3mH
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This shows that we could save power if we keep the pole induc-
tance low. The total inductance was 4,2 mH, that also includes the
inductances from the sides of the head.

In order to verify the result we measured the small contribution
to the inductance L; when layer is present and not present. The
voltage from the head was put in a bridge that was balanced when
layer was not present. The unbalance when layer was present was
found by TEEVENIN’s theorem to correspond to an inductance change
of 0,04 mH. The computed value according to the formulas for the
field was 0,036 mH. The quotient /N was 1. Measurements was
also made for greater values of this quotient and the result was fairly
satisfactory.

9. The transient field

" In this section we solve equation (6) for infinite layer and for finite
layer. The z-coordinate in (6} is to be replaced by y.

We assume that a polarized electro-magnetic wave with the
components H, and E, comes perpendicular to the layer. The wave
is applied suddenly at ¢ = 0 and the airgap b is assumed to be zero,
The initial value problem is for infinite layer:

H{0,8y=H,; Hoo,t)=0; H(y, 0)=0;
Then the Laplace transform of the equation (6) can be written:
1
h = '_;" - Hn e—kvr;‘
k= opp,
The corresponding time function is
O fipo

Hy,t)=Hqerley || —~

erfc is defined in appendix’l.
Considering the finite layer, we must add the condition that E,
is continuous at the point y = d (= other side of the layer).
" 3H >H
m gg-— = m a
y>d—o 'y y>dto ' dy
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Fig. 16. The magnetic field in the transient case.

where o, and o, represent the conductivity on each side of the
boundary. If the conductivity g, of the layer is zero (spinel material)
compared with the drim material (usually brass) we have the Laplace

transform
e 1200
h=Hy,————
® coshkd}s

and the time function

H@d,&)=2H, 3 (— 1) erfo [(2n+ 1) d V"‘::‘“]

n=0

Fig. 18 shows the two cases, infinite layer and finite layer, from which
one can compute the transient time for a given material.

10. Summary

The magnetic field in the ferromagnetic layer on a magnetic drum
is calculated having finite airgaps and finite permeability in the
layer. The layer is assumed to be a spinel material for which the
permeability is low. The special cases when the permeability is one
and infinite is treated by conformal mapping. The results from this
investigation suggest a . linear potential distribution between . the
corners of the recording head. This approximation gives explicit
expressions for the field, and the method is generalized to finite
permeability. Expressions are given for the field on each side of the
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layer, and asymptotic expressions are given for the field at a large
distance from the pole gap of the recording head. The inductance
of the head is calculated, and measurements of the inductance change
have been made when the permeability is increased from 1 to u.
The transient field is computed for the one-dimensional case,
assuming the resistivity of the layer to be very large. The results
can be used to analyze the influence on the field from permeability
and geometric shape of the head.
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12. Appendix 1

The sine-transform g (x) of the function @ (t) is defined by

g@)= [sinzt@ ) dt

1]
Ita inverse is
| 2
G () =— [sintzg@)de
T g _
The Laplace-transform f () of the function F (f) is defined by

j@)=Je"Fa
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The error integral is defined by

erf x =1 — erfcz:——fe_"
Vn
An asymptotic series diverges for all z, but can be used in numerical

computation if a finite number of termes is included. Cf. WHITTARER
and Warsoxn 1927,

13. Appendix 2. Derivation of the field formulas in
the general case

The boundary value problem defined by the equations (3), (4) and
(5)*is solved in the following wayl),

Let g (x) be the linear potential (20). Along the lines ¥y = & and
¥ = ¢ (each side of the layer) the H, field makes a ]ump accordmg
to equations (4) and (5).

Put
g (x) = fnsin:ct G (t)dt
0
where .
p 2Vein Nt
(8) = n N2

We want to determine three layers each with boundary value
potentials /, (z), f; () and f, () at the lines y =0, y =6 and y — ¢.
Their potentials should be equal to the function v (z, y). Set

h (@) =0fm F, (t) sin z ¢ dt

fa () = f Fy (8 sin wtdt

fs (@) =-of°Fs (t) sin z 8 dt
v(z,y)zflf(t,y) sin z ¢ dt

') The original proof assumed Cesdro summability of the sine transform of ¢ (z).
This derivation due to Mr G, DARLQUIST, avoids this difficulty.
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Now we consider the function u (z, ), defined by
u (x, §) = fwe‘”‘" sinzt F,(t)dt
0

This function satisfies Laplace’s equation

Au=0

This shows that a layer with the boundary potential f, (x) at the
line y = 0 gives a potential that is the sine transform of

e M- F ()

and similar for F; and F,
Then we have
Vit,y)=F @) "W + Fo(t)e P 4 Fy(t)e=tle—vl

Now we express the boundary conditions for the transforms, which
gives a linear system with three eqs. Solving this system we get

G
Fift) = (" — 2" 5

&
Fo@)=(e7'@ 7P —re) 5

&
Fy) = ¢ —1) 5

where

ot

n+1

D=t _ ¢ (8*235 . e—ﬁtc) _ e—ﬂt(c——b)

=

yr =

We can now form the various derivatives of » (x, ¢) and easily compute
the field components given by the eqs. (26), (27) (¢ infinite), (31),
(32}, (33) and (34). (¢ finite),
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To prove the asymptotic formulas, we observe that the integral
fz)= [F (t)sinxtads
0

can be expanded by repeated partial integration in a series of 1/

F)y F*(0
fay= 2 T

x

In the same manner we expand the integral
g (x) = fG {t) cos x ¢ dt
o

&0  G"(0

In our case the series are divergent for all z but are still useful for
large = (cf. appendix 1).

The derivatives are computed recurrently. For example, the integrand
of the formula (28) is 8/T, where

9 1 iN
=TemTy

T=usinht+ cos bt

Writing
GT' =8
we have
¢T 4+ GT' =48
and so on.

Proceeding in this way, we get the asymptotic expansions (29), (30)
(c infinite) and (35), (36), (37) and (38) (c finite).
The two first terms in the last four expansions are:

°bNu 22BNy
B,, = — B, 7 2 + ot 12#9+p‘“‘1+6¢—

6q(2
__9(_11;'-_1)+]
M
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BSyr:Bo[

2N 28N
ne matul

(W +dqpu—2¢° 12 — p*p#)3 —

—4qp‘+29’)+---]

2oN (u+q) 4bp
BM=—B.,[ —a a6 (0)—}-...]
2N 20N - : s 9 6 ot
By, = B, 7z dappaCH PRt 12qp+ 69~
-—-39*;@3—6q,u3}+...]
p=Njb
G”'(O):%‘[mw‘-{- 15 p° + (P — 1) p* + pPg p* —

— 8@t —15qput — 18qu — 6.93]
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